Breaking News
recent

সৌর কোষ কিভাবে কাজ করে? || How do solar cells work?




সৌর বিপ্লবের কথা আমরা বেশ কিছু বছর যাবৎ শুনে আসছি, যার মূল মন্ত্র হল - এমন একদিন আসবে যখন আমরা বিনা খরচে বিদ্যুৎ ব্যবহার করব। এই বিদ্যুতের মূল উৎস হল সূর্য। পরীক্ষা করে দেখা গেছে যে, একটি রৌদ্রোজ্ঞ্বল দিনে সূর্য পৃথিবী পৃষ্ঠের প্রতি বর্গ একক ক্ষেত্রফলে ১০০০ ওয়াট সমপরিমাণ আলোক শক্তি বিকিরণ করে!! যদি এই শক্তির পুরোটা সংগ্রহ করতে পারি তবে  আমরা আমাদের ঘরবাড়ি এবং অফিস আদালত প্রভৃতিকে সম্পূর্ণরূপে বিদ্যুতায়িত করতে পারব।

ক্যালকুলেটর বা স্যাটেলাইটে যে সৌরকোষসমূহ আমরা দেখি সেগুলো হল  photo voltaic কোষ বা module (module হল একই ফ্রেমে অবস্থিত একগুচ্ছ কোষ যারা ইলেক্ট্রিকালি সংযুক্ত থাকে)। Photo অর্থ হল আলো এবং Voltaic মানে হল তড়িৎ। অর্থাৎ Photo voltaic cell বলতে বোঝায় আলোকতড়িৎ কোষ, যা আলোকশক্তিকে তড়িৎ-এ রূপান্তরিত করে।

আলোকতড়িৎ কোষসমূহ অর্ধপরিবাহী (Semiconductor) পদার্থ দিয়ে গঠিত। বর্তমানে সিলিকন নামক অর্ধপরিবাহী বেশি ব্যবহৃত হয়। মূলত, যখন আলো এই কোষে এসে পড়ে তখন এই আলোর একটি নির্দিষ্ট অংশ অর্ধপরিবাহী কর্তৃক শোষিত হয়। এই আলোক শক্তি ইলেক্ট্রনকে পরমাণু হতে মুক্ত করে এবং ফলে ইলেক্টন গুলো স্বাধীনভাবে চলাচল করতে পারে। আলোকতড়িৎ কোষসমূহের প্রত্যেকের এক বা একাধিক তড়িৎক্ষেত্র থাকে যে বা যারা মুক্ত ইলেক্ট্রন গুলোকে একটি নির্দিষ্ট দিকে চলতে বাধ্য করে। এই ইলেক্ট্রনের প্রবাহই হল বিদ্যুৎপ্রবাহ সৃষ্টি করে। কোষগুলোর উপরে ও নিচে ধাতব পাত সংযুক্ত করে এই বিদ্যুৎকে বাইরে প্রবাহিত করা হয়।

ইহাই হল মূল প্রক্রিয়া, কিন্তু প্রকৃত ঘটনা আরও গভীর। একটি সিলিকন নির্মিত কোষ নিয়ে প্রকৃত ঘটনা আরও গভীরভাবে দেখা যাক -

সিলিকনের কিছু বিশেষ রাসায়নিক গুণাবলী রয়েছে। একটি সিলিকন পরমাণুতে ১৪ টি ইলেক্ট্রন রয়েছে, যারা ৩ টি ভিন্ন ভিন্ন শক্তিস্তরে সজ্জিত রয়েছে। কেন্দ্রের নিকটবর্তী প্রথম দুটি স্তর ইলেক্টন দ্বারা পূর্ণ থাকে। সর্বশেষ স্তরটি অর্ধপূর্ণ থাকে, অর্থাৎ ৪ টি ইলেক্ট্রন থাকে। প্রতিটা সিলিকন পরমাণু সর্বদা শেষ স্তরটি পরিপূর্ণ করতে চায়, অর্থাৎ ৮ টি ইলেক্ট্রন অর্জন করতে চায়। এই উদ্দ্যেশে, প্রতিটি সিলিকন পরমাণু কাছাকাছি অবস্থিত চারটি পরমাণুর সাথে ইলেক্ট্রন শেয়ার করে। অর্থাৎ প্রতিটি পরমাণু পার্শবর্তী পরমাণুর সাথে বন্ধন গঠন করে। মনে হয় যেন, প্রতিটি পরমাণু চারটি হাত দিয়ে অপর চারটি পরমাণুকে ধরে রাখে। এভাবে স্ফটিকাকার কাঠামো গঠিত হয়, যা আলোকতড়িৎ কোষের জন্য প্রয়োজনীয়।

এতক্ষন আমরা বিশুদ্ধ সিলিকন স্ফটিক নিয়ে আলোচনা করলাম। বিশুদ্ধ সিলিকন মোটামুটিভাবে বিদ্যুৎ অপরিবাহী, কারণ এতে স্বাভাবিক অবস্থাতে কোন মুক্ত ইলেক্ট্রন নেই। সৌরকোষ হিসেবে এই সিলিকনকে ব্যবহার করতে হলে সিলিকন স্ফটিকে সামান্য পরিবর্তন সাধন করতে হয়।

একটি সৌরকোষে ভেজালযুক্ত বা অবিশুদ্ধ সিলিকন ব্যবহৃত হয়। সিলিকন পরমাণুসমূহের সাথে অন্য পরমাণু মিশ্রিত করে অবিশুদ্ধ সিলিকন প্রস্তুত করা হয়। ফলে এই সিলিকনের কার্যকারিতা পরিবর্তিত হয়। সাধারনত আমরা ভেজালকে অনাকাংক্ষিত মনে করলেও, এক্ষেত্রে ভেজাল-ই কোষের সম্পূর্ণ কার্যকারিতা নিয়ন্ত্রণ করে। প্রকৃতপক্ষে এই ভেজাল ইচ্ছে করেই দেওয়া হয়। প্রতি মিলিয়ন সিলিকনের মধ্যে একটি করে ফসফরাস পরমাণুর উপস্থিতি বিবেচনা করা যাক। ফসফরাস পরমাণুর সর্ববহিস্থঃ স্তরে ৫ টি ইলেক্ট্রন রয়েছে। এই পরমাণুর চারটি ইলেক্ট্রন পার্শ্ববর্তী চারটি সিলিকনের সাথে আবদ্ধ থাকলেও একটি ইলেক্ট্রন মুক্তই থেকে যায়, যা কোন বন্ধনে আবদ্ধ থাকে না।

যখন বিশুদ্ধ সিলিকন শক্তিপ্রাপ্ত হয় (যেমন তাপ হতে প্রাপ্ত শক্তি), তখন কিছু ইলেক্ট্রন বন্ধন মুক্ত হয়ে তাদের পরমাণুকে ত্যাগ করে। প্রতিটি ইলেক্ট্রন ত্যাগের ফলে একটি করে হোল তৈরি হয়। এই ইলেক্ট্রনগুলো তখন সিলিকন স্ফটিকের মধ্যে অনবরত ছুটে বেড়ায় এবং হোল খুঁজে বেড়ায় তাতে পড়ার জন্য। এই ইলেক্তড়নগুলোকে মুক্ত বাহক বলে এবং এরাই বিদ্যুৎ পরিবহন করে। বিশুদ্ধ সিলিকনে এই ইলেক্ট্রনের সংখ্যা এতই কম যে তারা তড়িৎ পরিবহনে কোন গুরুত্বপূর্ণ ভূমিকা রাখতে পারেনা। ফলে বিশুদ্ধ সিলিকন এক অর্থে বিদ্যুৎ অপরিবাহী। কিন্তু ফসফরাস যুক্ত ভেজাল সিলিকনের কথা আলাদা। এক্ষেত্রে ফসফরাসের বাড়তি ইলেক্ট্রনগুলো খুব অল্প পরিমাণ শক্তিতেই মুক্ত হয়ে যায়- কেননা এই ইলেক্ট্রনগুলো কোন বন্ধনে আবদ্ধ থাকে না। ফলে বিশুদ্ধ সিলিকনের তুলনায় ভেজাল সিলিকনে তড়িৎ পরিবহনের জন্য অনেক বেশি বাহক পাওয়া যায়।বিশুদ্ধ সিলিকনের সাথে ভেজাল মেশানোকে ডোপিং বলা হয়। যখন ফসফরাস মেশানো হয় তখন প্রাপ্ত ভেজাল সিলিকনকে N-type সিলিকন বলা হয়। এক্ষেত্রে ইলেক্ট্রন বাহক হিসেবে কাজ করে এবং ইহার চার্জ negative বলে "n"-type বলা হয়। অর্থাৎ দেখা যাচ্ছে যে, ডোপিংকৃত সিলিকন বিশুদ্ধ ইলেক্ট্রনের চাইতে বেশ ভাল বিদ্যুৎ পরিবাহক।

প্রকৃতপক্ষে, সৌর কোষের এক অংশ হল N-type. অন্য অংশ বোরন দিয়ে ডোপিং করা হয়, যাকে P-type সিলিকন বলে। বোরনের সর্ববহিস্থঃ শক্তিস্তরে ৩ টি ইলেক্ট্রন রয়েছে। ফলে P-type সিলিকনে বাড়তি ইলেক্ট্রন থাকার পরিবর্তে বাড়তি হোলের সৃষ্টি হয়, যা তড়িৎ বাহক হিসেবে কাজ করে। ইলেক্ট্রনের অনুপস্থিতিই হল হোল, তাই হোলের চার্জ ইলেক্ট্রনের চার্জের বিপরীত অর্থাৎ positive। হোলের চার্জ positive বলেই "p"-type বলা হয়। হোলগুলোও ইলেক্ট্রনের মতই চলাচল করে।

আশ্চর্যজনক ঘটনা তখনই ঘটে যখন N-type এবং P-type সিলিকনকে একত্রে রাখা হয়। এই দুইধরণের সিলিকনকে সংযুক্ত করলে সংযোগস্থলে একটি তড়িৎক্ষেত্রের সৃষ্টি হয়। এই তড়িৎক্ষেত্র ছাড়া আলোক-তড়িৎ কোষ (Photovoltaic cell) কোনভাবেই কাজ করবে না। অর্থাৎ প্রতিটি আলোক-তড়িৎ কোষে কমপক্ষে একটি তড়িৎক্ষেত্র থাকতেই হবে।

এখন দেখা যাক N-type ও P-type সিলিকনকে সংযুক্ত করলে প্রকৃতপক্ষে কি ঘটে। N-type-এর মুক্ত ইলেক্ট্রনগুলো P-type-এর মধ্যে হোলগুলোকে খুঁজে পায় এবং খুব দ্রুত গিয়ে হোলগুলো পূর্ণ করে। ফলে সংযোগস্থলের N-type-এর দিকে positive charge এবং N-type-এর দিকে negative charge-এর সৃষ্টি হয়।এখন প্রশ্ন হলো যে, সকল মুক্ত ইলেক্ট্রন-ই কি হোলগুলোকে পূর্ণ করে। না, কেননা সংযোগস্থলে একটি তড়িৎক্ষেত্রের সৃষ্টি হয় যার দিক এমন হয় যা কিনা N-type থেকে আরও ইলেক্ট্রনকে P-type-এর দিকে আসতে বাধা হিসেবে কাজ করে।ফলে একসময় একটি সাম্যাবস্থার সৃষ্টি হয় যখন সৃষ্ট তড়িৎক্ষেত্র দুই পার্শ্বকে আলাদা করে রাখে।1

চিত্র ১- আলোক তড়িৎ কোষে তড়িৎ ক্ষেত্রের প্রভাব

এখন আমরা দেখব যে, এই অবস্থায় আলো পড়লে কি ঘটে। যখন ফোটন (আলোক কণা) সৌরকোষকে আঘাত করে তখন ইলেক্ট্রন-হোল জোড়া ভেঙ্গে যায় এবং ফলে ইলেক্ট্রন মুক্ত হয়।পর্যাপ্ত পরিমাণ শক্তিবিশিষ্ট প্রতিটি ফোটন কেবলমাত্র একটি ইলেক্ট্রনকে মুক্ত করে এবং সেইসাথে একটি হোল-ও সৃষ্টি হয়। এই ঘটনাটি যদি সৃষ্ট তড়িৎক্ষেত্রের কাছে ঘটে অথবা সৃষ্ট ইলেক্ট্রন ও হোল তড়িৎক্ষেত্রের প্রভাবযুক্ত অঞ্চলের আশেপাশে ঘুরে বেড়ায়, তবে তড়িৎক্ষেত্রটি N-type-এর দিকে একটি ইলেক্ট্রন এবং P-type-এর দিকে একটি হোল পাঠায়। এই অবস্থায় যদি বাইরে দিয়ে কোন সংযোগের ব্যাবস্থা করা হয়, তবে ইলেক্ট্রনগুলো সেই পথ দিয়ে P-type এলাকায় গিয়ে পৌঁছায় এবং হোল-এ এসে পড়ে। ইলেক্ট্রনের এই প্রবাহই তড়িৎপ্রবাহ সৃষ্টি করে এবং কোষটির তড়িৎক্ষেত্র একটি বিভব পার্থক্য বজায় রাখে। তড়িৎপ্রবাহ এবং বিভব পার্থক্য-এই দুইয়ের সম্মিলনে Power পাই যাকিনা এদের গুণফলের সমান।2

চিত্র ২- আলোক তড়িৎ কোষের কার্যপদ্ধতি
এখন প্রশ্ন হলো- এই আলোকতড়িৎ কোষ কি পরিমাণ সৌরশক্তি শোষণ করতে পারে? দুঃখজনক হলেও ইহা সত্য যে, বেশিরভাগ কোষ মোট সৌরশক্তির শতকরা মাত্র ২৫ ভাগ শোষণ করতে পারে।

সূর্যের আলোতে বিভিন্ন তরঙ্গদৈর্ঘ্যের আলো রয়েছে যাদের ফোটনের শক্তিও ভিন্ন ভিন্ন। যেহেতু সৌরকোষের উপর আপতিত আলোর ফোটনের শক্তি বিভিন্ন, তাই ইলেক্ট্রন-হোলযুগল সৃষ্টি করার মত পর্যাপ্ত শক্তি সকল ফোটনের থাকেনা। যে আলো  ইলেক্ট্রন-হোলযুগল সৃষ্টিতে ব্যর্থ হয়, সেই আলো সৌরকোষকে অতিক্রম করে চলে যায়। কেবলমাত্র একটি নির্দিষ্ট পরিমাণ শক্তির চেয়ে বেশি পরিমাণ শক্তি থাকলেই সেই ফোটন ইলেক্ট্রনকে মুক্ত করতে পারে। স্ফটিকাকার সিলিকনের জন্য এই শক্তির মান হলো 1.1eV (ইলেক্ট্রন ভোল্ট)। শক্তির এই মানকে আমরা Band gap energy বলি। কোন ফোটনের যদি এই শক্তির চাইতে বেশি পরিমাণ শক্তি থাকে তবে উদবৃত্ত শক্তি নষ্ট হয়ে যায়।এভাবে সৌরশক্তির শতকরা প্রায় ৭০ ভাগ নষ্ট হয়ে যায়।
এখন প্রশ্ন হলো যে,আরও বেশি ফোটনকে কাজে লাগানোর জন্য কেন আমরা আরও কম band gap energy বিশিষ্ট পদার্থ ব্যবহার করিনা? দুর্ভাগ্যজনক হলেও সত্য যে, band gap energy-ই সৃষ্ট তড়িৎক্ষেত্রের শক্তি নির্দেশ করে। অর্থাৎ কম band gap energy বিশিষ্ট পদার্থের দ্বারা সৃষ্ট কোষে বিভব পার্থক্যের মান নগণ্য হবে, যা গ্রহণযোগ্য নয়। মোটামুটিভাবে 1.4eV শক্তিকে সৌরকোষের জন্য আদর্শ মান হিসেবে গ্রহণ করা হয়।

সৌরকোষে ফোটনের শক্তি সংক্রান্ত অপচয় ছাড়াও আরও কিছু অপচয় রয়েছে। ইলেক্ট্রনগুলো কোষের বাইরের সংযোগ দিয়ে প্রবাহিত হয়। কোষের নিচের অংশ ভাল তড়িৎপরিবাহিতার জন্য ধাতব পদার্থ দিয়ে মুড়ে দেয়া হয়। কিন্তু উপরের অংশও যদি পূর্ণভাবে ঢেকে দেয়া হয়, তবে ফোটন অস্বচ্ছ তড়িৎপরিবাহী পদার্থ দিয়ে যেতে পারবে না এবং তড়িৎপ্রবাহ বন্ধ হয়ে যাবে। তাই কিছুক্ষেত্রে স্বচ্ছ তড়িৎপরিবাহী পদার্থ ব্যবহার করা হয়। যদি আমরা ধাতব সংযোগ শুধুমাত্র দুই পাশে দেই তবে সংযোগস্থলে পৌঁছাবার জন্য ইলেক্ট্রনগুলোকে বেশ খানিকটা পথ অতিক্রম করতে হবে। যেহেতু সিলিকনের রোধ বেশি এবং ইহা ধাতুর মত ভাল তড়িৎপরিবাহী নয় সেহেতু ইহার মধ্য দিয়ে বেশখানিকটা পথ অতিক্রম করা ইলেক্ট্রনের জন্য কঠিন হবে। ফলে অপচয় বেড়ে যাবে। এই অপচয় কমাবার জন্য ধাতব grid দ্বারা কোষগুলোকে মুড়ে দেওয়া হয়। ফলে ইলেক্ট্রনগুলোকে আর অধিক পথ অতিক্রম করতে হয়না।

আরও একটি সমস্যা রয়েছে। তা হলো- সিলিকন হলো একটি উজ্জ্বল পদার্থ। ফলে এতে আপতিত ফোটনের অনেকাংশ প্রতিফলিত হয়ে ফিরে যায়। এই কারণে কোষটির উপরের অংশ অপ্রতিফলক পদার্থ দিয়ে ঢেকে দেওয়া হয়।পরিশেষে কোষগুলোকে কাঁচের তৈরি ঢাকনা দিয়ে ঢেকে দেয়া হয় যেন কোষ অন্যকোন পদার্থের সংস্পর্শে আসতে না পারে। উল্লেখযোগ্য পরিমাণ বিভব এবং বিদ্যুৎ পাবার জন্য বেশ কিছু কোষ (সাধারণত ৩৬টি) প্রয়োজন অনুযায়ী সংযুক্ত করে PV module তৈরি করা হয়। তারপর কাঁচের ঢাকনা দিয়ে পুরো module টিকে ঢেকে দেওয়া হয়।


We've been hearing quite a few years ago during a solar revolution, which is the main principle - that the day will come when we will use free electricity. Sun is the main source of electricity. Testing has shown that the surface of the sun, a raudrojnbala ksetraphale 1000 watt equivalent light energy per square unit of radiation !! If we can collect all of this energy in our homes and offices, etc. can fully electrified.
Those are things that we see saurakosasamuha calculator or satellite photovoltaic cell or module (module is located in the same frame a set of cells are those associated ilektrikali). Photovoltaic means electricity. Photovoltaic cell alokatarit refers to the cell, which converts the electrical alokasaktike.
Alokatarit cells Semiconductor (Semiconductor) consist of material. Currently, the semiconductor silicon is used. Basically, when light falls on the cell, and then a certain portion of the light is absorbed by the semiconductor. Ilektranake The light energy may be nuclear free and can move freely as a result of the Elect. Alokatarit cells each contain one or more electrical or those that are specific to the forces of the free electron values. This flow of electrons creates an electric current. Tissue above and below the metal plate attached to the outside of this electricity is flowing.
Here is the original process, but actual events and more profound. Silicon cells are created by an actual event, let's look more deeply -
There are some special chemical qualities of silicon. 14 is a silicon atom, electron, who has 3 different saktistare equipped. Elect near the center of the first two stages have been completed. Ardhapurna last layer, ie 4 is electron. Each silicon atom is always full to the last layer, the electron wants to achieve 8. In this purpose, each silicon atom shares electrons with four other atoms nearby. This means that each atom to form bonds with surrounding atoms. I think, the four atoms of each atom has four hands to hold. The structure consists of sphatikakara, which is necessary for cell alokatarit.
We have discussed the duration of pure silicon crystal. Roughly pure silicon insulator for electricity, natural conditions, because there is a free electron. If you want to use this as a silicon solar battery silicon to crystallize little changed.
Silicon is used as a saurakose adulterate or corrupted. Sophisticated mixed with other atoms in silicon and silicon is prepared. This change is a function of the silicon. Although we usually think of impurities bhejalake, complete control of the adulteration of the cell. In fact, this is a wish to adulteration. The presence of phosphorus atoms in silicon per million, considered to be one. Level 5 is the electron sarbabahisthah phosphorus atoms. This four-electron atom bound to four neighboring silicon muktai but there is an electron, which is not bound.
Pure silicon is empowered (such as to obtain heat energy), and some of their free-electron atoms leave the union. As a result, each electron leaving a hole is created. The electrons in the silicon crystal constantly ran out of the hole; and strive for continuous reading. The carrier said this, and they are free ilektaranaguloke conductor. Pure silicon, the electron number is so low that they can play an important role in the electrical transportation. As a result, a sense of pure silicon insulator of electricity. However, the phosphorus impurities in silicon with different organizations. And by a very small amount of excess phosphorus electrons are free to coin because the electrons do not have any bond. As a result of impurities in silicon than pure silicon for transporting electricity to more carriers mesanoke doping impurities in silicon is yayabisuddha. When phosphorus is added to the N-type silicon is obtained silikanake. Serves as the electron carriers and negative charge of the "n" -type is called. It is seen that, for the electron doping of silicon than pure power conveyor well.
Indeed, part of the solar cell is N-type. Another part of the doping with boron, which is P-type silicon. B. sarbabahisthah saktistare 3 is the electron. The P-type silicon, extra electron, instead of having to create additional hole, which serves as the electrical carriers. The absence of an electron hole, the hole opposite the charge of the electron charge is positive. Positive hole charges that "p" -type is called. Holaguloo the same movement of electrons.
Surprisingly occurs when the N-type and P-type silicon is put together. This is a taritksetrera sanyogasthale duidharanera silikanake connected. Without the electrical light-electric cell (Photovoltaic cell) will not work anyway. Each of the light-electric cell must contain at least one electrical.
Now let's look at N-type and P-type silicon connected to what actually happens. N-type- holaguloke out of the free electrons in the P-type- and very quickly fill the holagulo. This confluence of positive charge at the N-type- and N-type- the creation of the negative charge- hayaekhana question is that of the free electron in the holaguloke. No, because that is the direction in which the junction generates a taritksetrera the N-type P-type- ilektranake more to return to work as a barrier to the creation of an equilibrium is once caused when electrical karephale to separate the two parsbake 1
Figure 1 Light electrical effect on cell electrical field
Now we will see what happens in this state of the light. When photons (particles of light), electron-hole pairs can be broken when hit saurakosake and as a result only a free electron hayaparyapta amount of each saktibisista ilektranake as well as a hole-and the creation. If this phenomenon occurs, or caused to taritksetrera caused electron and hole taritksetrera wander around the impact zone, but an electron to the N-type- taritksetrera and sends a hole on the P-type-. If you have any connection with the outside of this arrangement, the electrons reach the area of ​​the P-type and the fall in the hole. This flow of electrons creates Taritprabaha and electrical cell maintains a voltage difference. Taritprabaha and the potential impact of pi multiplied by the difference between the 2 meeting Power
Figure II light electric cell procedure
Now the question is, to what extent this alokatarit solar cells can absorb? It is sad but true that most of the solar cell can absorb only a 5 percent share.
Photon energy at different wavelengths in the light of the sun, there are different. Since the photon energy of the light incident on the solar cells, all of the electron-photon does not have enough energy to create holayugala. Holayugala the light of electron creation fails, the light can not exceed saurakosake. If you have only a certain amount of energy than the energy of the photon can ilektranake. Sphatikakara silicon value of this energy is 1.1eV (electron volts). Band gap energy of the energy we call this value. If the amount of energy than the energy of a photon, then lose energy yayaebhabe udabrtta than 70 percent of solar energy is lost.
The question now is, the more photons to utilize materials with low band gap energy use, why do not we? Unfortunately, band gap energy- E is the energy produced taritksetrera. Substances with a low band gap energy in the cells caused by the potential difference will be negligible value, which is not acceptable. Roughly 1.4eV energy is taken as the standard for solar cells.
In addition, there is some loss of photon energy-related saurakose. Electrons flow through the cell is connected to an external. Taritparibahitara good for the bottom part of the cell were covered with metal. But if the part is fully covered, the photon will not be able to go through the opaque substance taritparibahi and Taritprabaha will be closed. So some transparent material is used taritparibahi. We call on both sides of the metallic connection to reach the junction of the way electrons have to overcome quite a bit. Since the arrest of more than silicon and the metal is not good taritparibahi because it would be difficult for electrons to pass through the besakhanikata. This waste can be increased. To reduce this waste is covered by the metal grid cells. As a result, electrons can not exceed more than one way.
There is also a problem. It is a shiny substance include silicon. As a result, much of the incident photons are reflected back. For this reason, the upper part of the cell covered with a material apratiphalaka hayaparisese cells are covered with a glass lid so that the cell can not come into contact with other substances. Voltage and getting a significant amount of electricity for several cells (usually 36) connected to the needs of the PV module is made. Then the glass is covered with a lid to last the whole module.

No comments:

Powered by Blogger.